Wavelets: Where Vision, Math & DSP Meet

— a quick introduction

Jackie (Jianhong) Shen
School of Math, University of Minnesota, Minneapolis
www.math.umn.edu/~jhshen

Knowledge learned from my former Ph.D. advisor

-~ GilbertStrang
Department of Math, MIT, Cambridge
www-math.mit.edu/~gs




Overview

> Seeking the simple codes of complex images

> Representation: learning from our own vision

» Image zooming, and zooming neurons

» Multiresolution framework of Mallat and Meyer

» Two key equations for Shape Function & Wavelet
> The fundamental theorem of Multiresolution

> 2-channel orthogonal & biorthogonal filter banks

» Applications
» (Chris and Michelle’s talks are next)
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Behind complexity 1s simplicity

Examples:

The universal path to chaos 1s period doubling.
(Biology) ACTG encode the complexity of life.

(Computer) “0” and “1” (or spin up and down for Quantum
Computers) are the digital “seeds.”

(Physics) The complexity of the material world 1s based on
the limited number of basic particles.

(Fractals) Simple algebraic rules hidden 1n complex shapes.

Conclusion:

Hidden in a complex phenomenon, 1s its simple
evolutionary codes or building blocks (or the atoms).
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The complexity of image signals

Images:

* Large dynamic range of scales.

« Often no good regularity as functions.

« Rich variations in intensity and color.

* Complex shapes and boundaries of “objects.”

e Noisy or blurred (astronomical or medical image).

e “The lost dimension” --- range is lost but depth 1is still
important for understanding meaningfully 2-D images.
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Searching for the hidden code of images (I)

» Fractals: by Iterated Function Systems.

( Mandelbrot)

a-‘rlf | | 15-“1

e Pattern formation: via Differential ,qua'tmns.
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Searching for the hidden code of images (1I)

Statistical modeling ( Geman’s, Mumford, Zhu, Yuille...):

— Image prior models (edge, regularity,...).

— Image data models (noise, blurring,...).

— Image disocclusion models.
* Parametric methods & lattice models.
* Non-parametric methods & learning via the

maximum entropy principle.
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A representation, not an interpretation...

* Benoit Mandelbrot (interview on France-Culture):
“The world around us is very complicated. The tools at
our disposal to describe 1t are very weak.”

* Yves Meyer (1993):

“Wavelets, whether they are ..., will not help us to
explain scientific facts, but they serve to describe the
reality around us, whether or not it 1s scientific.”

« Thus, to represent a signal, 1s to find a good way to
describe it, not to explain the underlying physical
process that generates it.
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General 1mages

* Mostly no global multi-scale self-similarity.
* Contain both man-made and natural “objects”

e Mostly no simple and universal underlying
physical or biological processes that generate
the patterns 1n a general 1image.
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Fourier was born too early...

Claim: Harmonic waves are bad vision neurons. ..
Proof.

— A typical Fourier neuron is ¢ = exp(iax).

— To “see” a simple bright spot 9(x) in the visual field,

all such neurons have to respond to it (!) since

(6.4 y=1.
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Efficiency of representation

« David Field (Cornell U, Vision psychologist):

“To discriminate between objects, an effective
transform (representation) encodes each image
using the smallest possible number of neurons,

chosen from a large pool.”
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Asking our own “headtop”...

» Psychologists show that visual neurons are spatially
organized, and each behaves like a small sensor
(receptor) that can respond strongly to spatial

changes such as edge contours of objects (Fields, 1990).
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The Marr’s edge neuron model

* Detection of edge contours 1s a critical ability of
human vision (Marr, 1982).

* Marr and Hildreth (1980) proposed a model for
human detection of edges at all scales. This 1s Marr’s
Theory of Zero-Crossings:
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Haar’s average-difference coding

* Marr’s edge detector 1s to use second derivative to locate
the maxima of the first derivative (which the edge contours
pass through).

* Haar Basis (1909) encodes (modern language :-) the
edges 1nto image representation via the first derivative
operator (1.e. moving difference):

Xon T X5041
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A good representation should respect edges

« Edge 1s so important a feature in image and vision
analysis.

* A good image representation (or basis) should be
capable of providing the edge information easily.

« Edge 1s a local feature. Local operators like
differentiation must be incorporated into the
representation, as in the coding by the Haar basis.

« Wavelets improve Haar, while respecting the above
edge representation principle.
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What to expect from a good representation?

« Mathematically rigorous (i.e. a clean and stable
analysis and synthesis program exists. FT & IFT...).

« Having an independent digital formulation, and
computationally fast (FFT, FWT...).

« Capturing the characteristics of the input signals,
and thus many existing processing operators (e.g.
image indexing, image searching ...) are directly
permitted on such representation.
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Understanding images mathematically

« Let > denote the collection of “all” images. What 1s the
mathematical structure of 2 ? Suppose that £ €3 is
captured by a camera. Then 2. should be invariant under

— FEuclidean motion of the camera:

f(x)> f(Ox+a), Oe0(2),a c R’

f(xX) > uf(x),  peR,

or, more generally, a morphological transform ---

F(x)> h(f(x), h:R— R,h'>0.

— Flashing:

— Zooming:

f(x)—> f(Ax), A€ R".

Let us fodﬂ@ zooming

School of Math, UMN, jhshen@math 16



Zooming in 2-D
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What is zooming?
Zooming (aiming) center: a.
Zooming scale: A.

Zoom 1nto the A-neighborhood at ¢ in a given image I:
I,,(x)=1I(a+h-x), xeQ,the visual field;

I, (yhl): I(y)- IQ(yhl) the aperture.

Zooming 1s one of the most fundamental and characteristic
operators for image analysis and visual communication. It
reflects the multi-scale nature of 1images and vision.
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The zooming neuron representation
The zooming “neuron”: ¥ (Xx).

aiming (a) and zooming-in-or-out (/):

Vo (X) = =y (55%).

Generating response (or neuron firing):

L, = <[:Wa,h>: j[(x)l//a,h(x)dx'

The zooming space: (a,h) e Rx R".
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A “good” neuron must be differentiating

* A good neuron should fire strongly to abrupt changes,
and weakly to smooth domains (for purposes like
efficient memory, object recognition, and so on).

« That means, for an uninteresting image I=c, the
responses !, ;, are all zeros:

L, , = <[?l//a,h>E 0.
This 1s the “differentiating” property of the neuron,
just like “d/dx”:

Jow (x)=0.
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The continuous wavelet representation

Definition:

A differentiating zooming neuron ¥ (x) is said to be a
(continuous) wavelet. Representing a given image /(x)
by all the neuron responses 7, , = (I,y,, ) is the
corresponding wavelet representation.

Questions:
— Does there exist a “best” wavelet ¥ (X) ?
— Does a wavelet representation allow perfect reconstruction?
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Synthesizing a wavelet representation

« Goal: to recover perfectly an image signal [ from its
wavelet representation /(a, h).

e (Continuous) Wavelet synthesis:
ICa,hy={Tw,,)= <?,w2,h>= <?v3<h§>, e’“>,

which is in the form of IFT. Thus J (&, h) = Ty (h&)
can be perfectly recovered via the a-FT of I (a,h).

Then } can be perfectly recovered fromJ via

1) =] JEmyhE) hdn, |7 1yt Thdh =1,
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The admissibility condition & differentiation

» The admissibility condition of a continuous wavelet:

[ 1w P I hdh <o

0

« A differentiating zooming neuron satisfies the AC since:
w(0) = [ w(x)dx =0, and y (h) = ch +o(h)

« Examples:

— The Marr wavelet (Mexican-hat): second derivative of Gaussian.

— The Shannon wavelet: ¥/ (X) = 2s1nc (2x) —sInc (x)
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The discrete set of zooming neurons

Make a log-linear discretization to the scale parameter /:
J—> j=-log,h;, =0, £1, £2, --

Make a scale-adaptive discretization of the zooming
centers:
at scale h, =27k > a, =kh =k /2,

k=0,x1,£2, -
The discrete set of zooming neurons:

v (0) = <= (5 = 277y (2 x = k),

School of Math, UMN, jhshen@math 24



The discrete wavelet representation

 The wavelet coefficients:

d,,=(Ly,,)=2" jR 1w (27 x - k)dx.

d,,=1,, ,,, nterms of the continuous WT.

 (Questions:

— Does the set of all wavelet coefficients still encode the
complete information of each input image / ? Or equivalently,

— Is the set of wavelets ¥, (x): j,k € Z} abasis?

We don't know. But let's check out some examples...
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Example 1: Haar wavelet

« The Haar “aperture” function is

Wharr (X)) =1oca (X)) =1y, (X).

« Haar’s theorem (1905):

All Haar wavelets y ?aj: , together with the constant function I,
consist into an orthonormal basis for the Hilbert space of all

square integrable functions on [0, 1].
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Haar wavelets (cont’d)

 Haar’s mother wavelet:

WHarr (X)) =1oca (X)) =1y, (X).

* Why orthonormal basis?
— Orthonormality 1s easy to see.
— Completeness is due to the fact that:

All dyadically piecewise constant functions are dense in £2(0,1).
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Haar wavelets (cont’d)

1 constant + 3 wavelets are enough.

« Three Haar wavelets and the mean (constant) encode al/
the information of the piecewise constant approximation
(or, the analog-to-digital transition).
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Example 2: The Shannon wavelets

« The Shannon’s “aperture” function is:

Shannon

4 (x) =2 sinc (2x) — sinc (x).

sSiNnc(x><)

Psinc(X2x)-sinac(>x)

e Theorem:

Shannon

{w,. (x):j,keZz} isanorthonormal basis of L:(R).
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Shannon wavelets (cont’d)

« How to visualize the orthonormal basis ?
Answer: go to the Fourier domain !

shan

v (x)=2sinc (2x)—sinc (x).

Fourier of 2sinc(2x)
Fourier of sinc(x)

-2pi -pi pi 2pi

* According to Shannon:

— All signals bandlimited to (—m, 7) can be represented by sinc(x-n)...
— those bandlimited to (27, 1) U (x, 2n), by W (x—n).
— those bandlimited to (—4n, 2 ) U (27, 4n), by v, , = \/El//(Zx —n).
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Shannon wavelets (cont’d)

* According to Shannon:

— All signals bandlimited to (- 77, 7) can be represented by sinc(x-n)...
— those bandlimited to (-2 7z, -7) U (7,2 ), by ¥ (x—n).
— those bandlimited to (-4 7,-2 7)U2 7, 4x),by v, , = \/Elﬂ (2x —n).

— represented by y, = \/Et//(Zx —n)'s.
— represented by w(x — n)'s.

— representedbyy | = 1/\/§gy(x /2—n)'s.

T 27T A

School of Math, UMN, jhshen@math 31



Partition of the time-frequency plane

« Heisenberg’s uncertainty principle requires that each TF
atom must have: Af-Ax = 27,

e Thus, for an optimal localization, the “life time” of an
atom must influence its scale or frequency content.

sinc(4x-k)

frequency

sinc(2x-m)

—

time
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Multiresolution analysis

Mallat and Mever (1986):

An (orthogonal) multiresolution of L2(R) 1s a chain of
closed subspaces indexed by all integers:

V.,V ,cV,cV,cV,---
subject to the following three conditions:

— (completeness)
limV, =L,(R), lim V, = {0}.

n— o0

— (scale similarity)

eV, o fQx)eV,,,.

— (translation seed) Vo has an orthonormal basis consisting of all
integral translates of a single function ¢(x): {¢(x—n):neZ}.
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Equations for designing MRA

* The refinement (dilation) equation for the “seed” function:

p(x)=2) " h,¢(2x—n), forasuitable set of ,'s.

This seed function 1s called: scaling function, shape fcn...

* Where is the wavelet?

Let W, denote the orthogonal complement of V in V.
Then ¥, 1s also orthogonally spanned by the integer
translates of a single translation seed y(x), the wavelet!

w(x)=2) g p(2x—n), forasuitable set of g,'s.
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Wavelets representation

Theorem:

v, =2""w(2’x—k): j,keZ} is an orthonormal basis for L,.

Wavelets representation of a signal:

\ \ \ IOEVE)‘
JIEWl dj—z"' d,eW,.

. =d + d

J Jj—1 Jj—2

IIeV

+ - +d,+1,.
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An example of wavelet decomposition

One level wavelet decomposition of a 1-D signal

15_ T T T T T T T _]

05 .
The signal T

_0 5 1 1 1 1 1 1 1
4] 50 100 150 200 250 300 350 400

The coarse scale
0.5+ —

° \

-0.5

velet coefficients d's

1 | 1 1 1 1 | 1 1
o] 20 40 60 80 100 120 140 160 180 200
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2-channel filter bank: Analysis bank

* H’ is the lowpass filter and G’ is the highpass filter.
« | 2 is the downsampling operator: (1 34 6 5)—>(1 4 5).

lowpass channel

x J—
highpass channel
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2-channel filter bank: Synthesis bank

* H 1s the lowpass filter and G 1s the highpass filter.
« 12 is the upsampling operator: (1 4 5)—> (1 04 0 5).

lowpass channel

()

highpass channel
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A biorthogonal filter bank

X
o)
o

Biorthogonal (or perfect) filter bank: if y=x for all inputs x .
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An orthogonal filter bank

H)

"y

Orthogonal filter bank: if it 1s biorthogonal, and both
analysis filters H’ and G’ are the time reversals of the
synthesis filters H & G: H=(1, 2,3)—H’=(3, 2, 1).
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The fundamental theorem of MRA

* An orthogonal Mallat-Meyer MRA corresponds to an
orthogonal filter bank with the synthesis filters:

H=(h, :ne”Z) G=(g,:nel”).

where, the h’s and g’s are the 2-scale connection
coefficients 1n the dialation and wavelet equations:

$(x)=2Y h,¢Q2x—n), y(x)=2) g,$(2x-n)

And, the multiresolution wavelet decomposition of f
corresponds to the iteration of the analysis bank with the

¢-coefficients of f as the input digital data.
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The fundamental theorem (cont’d)

Ij_1 =

I] EI/J- \. I/j—l \F \F IOEI/O.
d; €W, d; d,eW,.

I =d

; jatd, ,+ e+ dy+ 1.

Suppose j=2,and [, = chz (k)g,  (x).

@)_> H’ —@—’ Co

G’ —@_’ do

C>— o |
i —\G° —@—’ d
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Some major applications

FBI fingerprints.

JPEG2000.

Image indexing and 1image search engines (for databank).
Image modeling (such as MRF on the wavelets domain).
Image denoising and restorations.

Texture analysis.

Direct processing tools on the wavelets domain.
Algorithm speeding up based on multi-resolution rep..
Time series analysis.

A lot of others ...
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New Directions of Wavelets

 Random Wavelets Expansion (RWE) by Mumford-
Gidas [2001], to model the scale-invariance of general
1mages.

e Geometric Wavelets:
— D. Donoho’s school: ridgelets, wedgelets, curvelets.
— S. Mallat [2001]: beamlets.

— T. Chan & H.-M. Zhou [2000], A. Cohen [2002]: integrate
computational PDE techniques such as the ENO scheme into
wavelet transforms, to better capture shocks (discontinuities).
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That is all, folks...
Thank you for your patience!




